#### Elements of the RIA Driver Linac



#### RIA Driver Linac – Superconducting Resonator Configuration

(configured for uranium 28-29+ input at beta = .01749, stripping at frequency transitions)

| Beta            | Type     | Freq  | Length | Eacc    | Voltage  | Phase      | No. Cav  | ities / S | ection |
|-----------------|----------|-------|--------|---------|----------|------------|----------|-----------|--------|
|                 |          | (MHz) | (cm)   | (MV/m)  | (MV)     | deg.       | Injector | Middle    | Final  |
| 0.021           | 3 DT     | 57.5  | 18     | 4       | 0.62     | -30        | 2        |           |        |
| 0.030           | 3 DT     | 57.5  | 26     | 4       | 0.90     | -30        | 5        |           |        |
| 0.062           | 1 DT     | 57.5  | 20     | 5       | 0.87     | -30        | 32       |           |        |
| 0.128           | 2 DT     | 115.0 | 36     | 4       | 1.25     | -30        | 40       |           |        |
| 0.190           | 2 DT     | 172.5 | 36     | 5       | 1.56     | -30        |          | 72        |        |
| 0.380           | 2 DT     | 345.0 | 36     | 5       | 1.56     | -30        |          | 96        |        |
| 0.490           | 6 Cell   | 805.0 | 55     | 8.28    | 3.93     | -25        |          |           | 76     |
| 0.610           | 6 Cell   | 805.0 | 68     | 10.22   | 6.04     | -25        |          |           | 84     |
| 0.810           | 6 Cell   | 805.0 | 91     | 12.56   | 9.85     | <b>-25</b> |          |           | 28     |
|                 |          |       |        |         |          |            |          |           |        |
| Total Ca        | vities = | 435   |        | Section | Cavities | =          | 79       | 168       | 188    |
| <b>Total Vo</b> | ltage =  | 1421  | (MV)   | Section | Voltage  | =          | 77.6     | 261.9     | 1081.4 |

#### Costing Methodology and Assumptions

#### **Assumptions:**

- Production of SC cavities coordinated by ANL using commercial vendors for machining, forming, and EB welding of components
- SC Cavities processed and tested at ANL
- Final assembly of cryomodules performed at ANL

#### **Methods:**

- Experience at ANL with the SC ion linac ATLAS
- Vendor quotes

#### **Some Primary Contributors:**

•Engineering analysis & support

•Cryostat engineering & fabrication

•Electron beam welding

Advanced Energy Systems, Inc

Meyer Tool & Mfg. Co.

Sciaky, Inc.

## Some Contributors to Pricing Backup

- Cryogenic Components
- Niobium & Vanadium
- Niobium Seamless Tubing
- Stainless Steel Type 304
- Explosion Bonded Nb-SST
- Hydroforming
- Die Stamping of Stiffeners
- Bellows/Flange Assemblies
- Couplers & Magnets

Meyer Tool & Mfg

Wah Chang

Metal Technology, Inc.

Sterling Aircraft Materials Ltd.

Northwest Technical Industries

Aero-trades Manufacturing

Short Run Stamping Co., Inc.

Metal Flex Welded Bellows, Inc.

Lawrence Livermore Nat'l. Lab.

#### **RIA Driver Drift-tube Linac Section – Cost Breakout**

(not included in total)

| 1.1 Research & Development                                     | (\$8,782) |           |
|----------------------------------------------------------------|-----------|-----------|
| 1.1.1 System Studies                                           |           | (\$282)   |
| 1.1.2 Component Prototyping                                    |           | (\$8,500) |
| 1.2 System Design                                              | \$6,626   |           |
| 1.2.1 Conceptual Design                                        |           | (\$1,146) |
| 1.2.2 Preliminary Design                                       |           | \$2,640   |
| 1.2.3 Final Design                                             |           | \$3,985   |
| 1.3 Driver Accelerator Systems                                 | \$35,296  |           |
| 1.3.2 Drift Tube Linac Section                                 |           | \$32,696  |
| 1.3.4 Beam Stripper & Charge State Selection Systems (2 units) |           | \$2,500   |
| 1.3.5 Beamline Secondary Systems - Metrology                   |           | \$100     |
| 1.6 RF Systems                                                 | \$14,134  |           |
| 1.6.1 Signal Source Systems                                    |           | \$81      |
| 1.6.2 Drift Tube Accelerator Systems                           |           | \$14,053  |
| 1.7 Cryogenic Supply & Distribution Systems                    | \$8,310   |           |
| 1.7.1 Liquid Helium Refrigerator Systems                       |           | \$5,310   |
| 1.7.2 Distribution System                                      |           | \$3,000   |
| 1.10 System Controls and Diagnostic Systems                    | \$3,356   |           |
| 1.10.1 System Controls                                         |           | \$1,972   |
| 1.10.2 Diagnostics Systems                                     |           | \$1,384   |
| 1.11 Environmental, Safety, Health, and Radiation Control Syst | \$655     |           |
| 1.11.2 Access Control & Interlock Systems                      |           | \$655     |
| 1.13 Project Management & Control                              | \$4,058   |           |
| 1.13.1 Program Office                                          |           | \$780     |
| 1.13.2 Project Sciences                                        |           | \$609     |
| 1.13.3 Project Engineering                                     |           | \$1,280   |
| 1.13.4 System Engineering                                      |           | \$785     |
| 1.13.5 Program Support                                         |           | \$302     |
| 1.13.6 Business Operations                                     |           | \$302     |
| TOTAL                                                          | \$72,435  |           |

NOTE: Costs are given in k\$

#### **RIA Driver Drift-tube Linac Section – Cost Breakout**

| 1.1 Research & Development                                        | (\$8,782) |           |
|-------------------------------------------------------------------|-----------|-----------|
| 1.1.1 System Studies                                              |           | (\$282)   |
| 1.1.2 Component Prototyping                                       |           | (\$8,500) |
| 1.2 System Design                                                 | \$6,626   |           |
| 1.2.1 Conceptual Design                                           |           | (\$1,146) |
| 1.2.2 Preliminary Design                                          |           | \$2,640   |
| 1.2.3 Final Design                                                |           | \$3,985   |
| 1.3 Driver Accelerator Systems                                    | \$35,796  |           |
| 1.3.2 Drift Tube Linac Section                                    |           | \$32,696  |
| 1.3.4 Beam Stripper & Charge State Selection Systems (2 units)    |           | \$3,000   |
| 1.3.5 Beamline Secondary Systems - Metrology                      |           | \$100     |
| 1.6 RF Systems                                                    | \$14,134  |           |
| 1.6.1 Signal Source Systems                                       |           | \$81      |
| 1.6.2 Drift Tube Accelerator Systems                              |           | \$14,053  |
| 1.7 Cryogenic Supply & Distribution Systems                       | \$8,310   |           |
| 1.7.1 Liquid Helium Refrigerator Systems                          |           | \$5,310   |
| 1.7.2 Distribution System                                         |           | \$3,000   |
| 1.10 System Controls and Diagnostic Systems                       | \$3,356   |           |
| 1.10.1 System Controls                                            |           | \$1,972   |
| 1.10.2 Diagnostics Systems                                        |           | \$1,384   |
| 1.11 Environmental, Safety, Health, and Radiation Control Systems | \$655     |           |
| 1.11.2 Access Control & Interlock Systems                         |           | \$655     |
| 1.13 Project Management & Control                                 | \$4,058   |           |
| 1.13.1 Program Office                                             |           | \$780     |
| 1.13.2 Project Sciences                                           |           | \$609     |
| 1.13.3 Project Engineering                                        |           | \$1,280   |
| 1.13.4 System Engineering                                         |           | \$785     |
| 1.13.5 Program Support                                            |           | \$302     |
| 1.13.6 Business Operations                                        |           | \$302     |
| TOTAL                                                             | \$72,935  |           |

(not included in total)

NOTE: Costs are given in k\$

#### 57.5 MHz, QWR-class cavities for the RIA Driver LINAC



## Elements of the prototype niobium 350 MHz spoke cavity prior to final (closure) EB welding



## Warm model of the two-cell 175 MHz lollipop cavity on left, of the two-cell 350 MHz spoke cavity on right



## **Some Costing Assumptions:**

| Variable                                    | Value      | Comments                      |
|---------------------------------------------|------------|-------------------------------|
| Number of 0.03 Beta Fork Resonator Cavities | 2          |                               |
| Number of 0.03 Beta Fork Resonator Cavities | 5          |                               |
| Number of Quarter Wave Resonator Cavities   | 32         |                               |
| Number of 175 MHz Cavities                  | 112        | (72 Lollipop + 40 Split-ring) |
| Number of 345 MHz Cavities                  | 96         |                               |
| RRR 100 Niobium Drawn Tubing (1.18 ID x .12 | \$1,990.00 | per 12"-13" segment           |
| RRR 100 Niobium Drawn Tubing (2.18 ID x .12 | \$3,390.00 | per 12"-13" segment           |
| 0.125 in RRR 100 Niobium Sheet              | \$183.00   | per lb.                       |
| 0.75 in RRR 100 Niobium Plate               | \$147.00   | per lb.                       |
| 0.125 in 304L SS Sheet                      | \$3.50     | per lb.                       |
| Vanadium Cost per pound                     | \$441.00   | per lb.                       |
| Density of 304L Stainless Steel             | 489.02     | Lbs./ft3 (0.283 lbs./cu in)   |
| Density of Niobium                          | 533.89     | Lbs./ft3 (8.57 gm/cc)         |
| Density of Vanadium                         | 381.89     | Lbs./ft3 (0.221 lbs./cu in)   |
| Machining learning curve percentage         | 95%        |                               |

## **Breakdown – Cavity Fabrication Costs**

| Cavity Type    | Quantity | Raw Materia | al  | Services    |     | Machining | g   | Tooling  |     | <b>Total Cost</b> |
|----------------|----------|-------------|-----|-------------|-----|-----------|-----|----------|-----|-------------------|
| 0.021 FORK     | 2        | \$87,553    | 36% | \$32,988    | 14% | \$21,638  | 9%  | \$98,400 | 41% | \$240,579         |
| 0.03 FORK      | 5        | \$262,548   | 56% | \$82,470    | 18% | \$43,513  | 9%  | \$76,200 | 16% | \$464,731         |
| QWR Cavity     | 32       | \$1,454,954 | 64% | \$540,928   | 24% | \$203,118 | 9%  | \$60,800 | 3%  | \$2,259,800       |
| 175 MHZ Cavity | 112      | \$3,374,287 | 58% | \$2,043,733 | 35% | \$312,709 | 5%  | \$71,705 | 1%  | \$5,802,435       |
| 345 MHZ Cavity | 96       | \$3,208,393 | 62% | \$1,315,692 | 26% | \$595,969 | 12% | \$16,600 | 0%  | \$5,136,654       |

# Average costs for the finished cavities are:

| Cavity Type    | Quantity | Avg | Cost/Cavity |
|----------------|----------|-----|-------------|
| 0.021 FORK     | 2        | \$  | 120,289     |
| 0.03 FORK      | 5        | \$  | 92,946      |
| QWR Cavity     | 32       | \$  | 70,619      |
| 175 MHZ Cavity | 112      | \$  | 51,807      |
| 345 MHZ Cavity | 96       | \$  | 53,507      |

## **Section Views – 350 MHz Spoke Cavity**



#### **Spoke Fabrication - Assembly**



#### **End Wall Installation**





#### **Double Spoke Cavity Assembly:**

- 1. Perform a light BCP on the Tank Sub-Assembly and (2) End Wall Sub-Assemblies.
- 2. Assemble (1) Tank Sub-Assembly and (2) End Wall Sub-Assemblies into the EB Weld tooling that will align and position the End Walls Sub-Assemblies in respect to the tank's beam tube centerline.
- 3. EB Weld the (2) End Wall Sub-Assemblies to the Tank Sub-Assembly creating .a Double Spoke Cavity Assembly.

#### **Double Spoke Cavity & Solenoid Installation**



#### **Drive Coupler Installation (8 Places)**



## Round Cryomodule - Cut-away View



### **Box Cryomodule - Cavity & Solenoid Installation**



## **Box Cryomodule – Cut-away View**



## Elements of the 180 degree bend region of the RIA Driver Linac



# Elements of the Dogleg Bend Region of the RIA Driver Linac



Kenneth Shepard

RIA Cost Review: Driver Linac – Drift-tube Section

10 January 01

## **Cost Breakout for Spoke-cavity Linac Section**

| 1.3 Driver Accelerator Systems                                    |            |           |         |
|-------------------------------------------------------------------|------------|-----------|---------|
| 1.3.2 Drift Tube Linac Section                                    |            |           | CM unit |
| 1.3.2.2 Post-stripper Drift-tube Section                          |            |           | costs   |
| 1.3.2.2.3 Cryomodule #20-31 (0.38 β Cavities)                     | \$12,671   |           |         |
| 1.3.2.2.3.1 Cavities                                              |            | \$6,625   | \$1,056 |
| Fully dressed cavity cost of 69 k\$ = bare cavity (54 k\$) + tune | ers & powe | r coupler |         |
| 1.3.2.2.3.2 Cryostats                                             |            | \$2,909   |         |
| 1.3.2.2.3.3 Internal Cryogenics                                   |            | \$504     |         |
| 1.3.2.2.3.4 Focusing Magnets                                      |            | \$420     |         |
| 1.3.2.2.3.5 Vacuum Systems                                        |            | \$1,032   |         |
| 1.3.2.2.3.6 Cavity Processing & Cryostat Assembly                 |            | \$1,182   |         |
| 1.3.2.4 Cryomodule Installation & Checkout in Tunnel              | \$362      |           | \$12    |
| 1.6 RF Systems                                                    |            |           |         |
| 1.6.2 Drift Tube Accelerator Systems                              |            |           |         |
| 1.6.2.4 Circular Cyomodule RF Power Systems                       | \$9,364    |           | \$360   |
| 1.6.2.4.1 High Level RF Power                                     |            | \$3,150   |         |
| 1.6.2.4.2 Low Level RF Power                                      |            | \$4,676   |         |
| 1.6.2.4.3 Miscellaneous Hardware                                  |            | \$1,538   |         |
| Cost per Cryomodule - w/o contingency                             |            |           | \$1,428 |

Costs are given in k\$

## Stripping & Charge-state Selection

| Elements             | Dogleg Bend       | 180 Bend       | Cost    |
|----------------------|-------------------|----------------|---------|
| Quadrupole magnet    |                   |                | \$210   |
| Number of magnets    | 6                 | 8              |         |
| Effective length     | 0.25 m            | 0.25 m         |         |
| Bore radius          | 30 mm             | 30 mm          |         |
| Pole field           | 0.5 T             | 1.0 T          |         |
| Quadrupole magnet    |                   |                | \$120   |
| Number of magnets    | 6                 | 2              |         |
| Effective length     | 0.25 m            | 0.4 m          |         |
| Bore radius          | 50 mm             | 50 mm          |         |
| Pole field           | 0.8 T             | 0.8 T          |         |
| Dipole magnet        |                   |                | \$490   |
| Number of magnets    | 2                 | 4              |         |
| Effective length     | 0.3 m             | 0.3 m          |         |
| Bending angle        | 7 deg             | 10 deg         |         |
| Bore(width ×gap)     | 30 ×15 mm×mm      | 25 ×50 mm ×mm  |         |
| Pole field           | 0.7 T             | 2.25 T         |         |
| Dipole magnet        |                   |                | \$760   |
| Number of magnets    | 2                 | 4              |         |
| Effective length     | 0.7 m             | 0.8 m          |         |
| Bending angle        | 50 deg            | 55 deg         |         |
| Bore(width ×gap)     | 30 ×15 mm×mm      | 30 ×50 mm ×mm  |         |
| Pole field           | 2. T              | 4.5 T          |         |
| RF Rebuncher voltage | 4.0 MV            | 1.3 MV         | \$920   |
| Stripper             | 0.1 mg/cm lithium | 8 mg/cm carbon | \$400   |
| Misc. Systems        |                   |                | \$100   |
|                      |                   | TOTAL          | \$3,000 |